BIOLOGY 4FF3, Introductory Computational Biology

Recapitulation for section Genes - modeling, logarithms, information and probability theories, Mendel's Laws, Bayes' Theorem
$P(j)=n_{j} / n$
n_{j} enumerates sample members that are known to possess property j n enumerates members in the sample
$\mathrm{P}(\mathrm{j})$ resides in the interval $[0,1]$
$\Sigma \mathrm{P}(\mathrm{j})=1$
the summation is performed over all j
$P(j$ or $k)=P(j)+P(k)$
mutually exclusive properties j or k
$P(\sim j)=1-P(j)$
~ means 'not'
$\mathrm{P}(\mathrm{j}$ and k$)=\mathrm{n}_{\mathrm{j} \text { and } \mathrm{k}} / \mathrm{n}$
the joint probability for properties j and k
$P(j)=\Sigma P(j$ and $k)$
sum over k
$P(k)=\Sigma P(j$ and $k)$
sum over j
$P(j)=n_{j \text { and } k} / n_{k}=P(j) P(k)$
independent properties j and k
$S=-\Sigma\left(P(j) \log _{2}[P(j)]\right)$
$\mathrm{I}=-\Delta \mathrm{S}=\mathrm{S}_{\mathrm{i}}-\mathrm{S}_{\mathrm{f}}=-\Sigma\left(\mathrm{P}(\mathrm{j})_{\mathrm{i}} \log _{2}\left[\mathrm{P}(\mathrm{j})_{\mathrm{i}}\right]\right)+\Sigma\left(\mathrm{P}(\mathrm{j})_{\mathrm{f}} \log _{2}\left[\mathrm{P}(\mathrm{j})_{\mathrm{f}}\right]\right)$
the summation is performed over j states initially i and finally f
discerning the states often requires careful consideration
$P(j \mid k)=n_{j \text { and } k} / n_{k}=P(j$ and $k) / P(k)$
generally; reduces to $P(j)=P(j) P(k)$ if j and k are independent
$P(j$ or $k)=P(j)+P(k)-P(j$ and $k)$
generally; reduces to $P(j$ or $k)=P(j)+P(k)$ if j or k are mutually exclusive
$P(H \mid d)=P(d \mid H) P(H) /(P(d \mid H) P(H)+P(d \mid \sim H) P(\sim H))$
Bayes' Theorem
all equations may be applied to genetic data

Recapitulation for section Cell (ultrastructure and organisation) trigonometry, stereology

Trigonometry
θ
0
$\pi / 6$
$\pi / 4$
$\pi / 3$
$\pi / 2$
$\operatorname{Sin}[\theta]$
0
$1 / 2$
$1 / \operatorname{Sqrt}[2]$
$\operatorname{Sqrt}[3] / 2$
1
$\operatorname{Cos}[\theta]$
1
Sqrt[3] / 2
1 / Sqrt[2]
$1 / 2$
0
‘CAST' rule
$\operatorname{Tan}[\pi]=\operatorname{Sin}[\pi] / \operatorname{Cos}[\pi]$
$V_{V}=A_{A}=L_{L}$
Delesse Principle
$\mathrm{p}=\mathrm{n}_{\mathrm{n}} \mathrm{z}$
Perimeter
$S_{v}=p / A$
Surface Density
$N_{A}=N_{V} D$
Numerical Density
$\mathrm{D}=6(\mathrm{~V} / \mathrm{S})=6\left(\mathrm{~V}_{\mathrm{V}} / \mathrm{S}_{\mathrm{V}}\right)=6\left(\mathrm{~A}_{\mathrm{A}} / \mathrm{S}_{\mathrm{V}}\right)$
$=6\left(n_{\text {corners }} z^{2} /(4 A)\right) /\left(n_{\text {intersections }} z / A\right)$
typical diameter for spherical objects

Recapitulation for section Individual (growth and scaling principles) - power functions, linear transformations, linear regression

Mathematical Model:

$$
Y=a X^{b}
$$

Power Function
Mathematical Tools: $\quad \log [Y]=\log [a]+b \log [X]$ a, b, r^{2}

Logarithmic Transformation Least-Squares Regression

Particular Hypotheses:
$L \propto S^{1 / 2}$
$L \propto M^{1 / 3}$
$S \propto M^{2 / 3}$
geometric similarity
$\mathrm{L} \propto \mathrm{D}^{2 / 3} \quad$ elastic similarity

Metabolism:
$P_{\text {met }} \propto M^{3 / 4}$

Recapitulation for sections Population (growth characteristics) - logistic equation (continuous) and Population (growth dynamics) - Iogistic equation (discrete), chaos theory, phase space, differential equations

Mathematical Model
$N(t)=N(0) e^{k t}$
Exponential Equation
Mathermatical Tool $\log [\mathrm{N}(\mathrm{t})]=\log [\mathrm{N}(0)]+\mathrm{kt}$ Logarithmic Transformation
Mathematical Model
$N(t)=K /\left(1+e^{r(C-t)}\right) \quad$ Logistic Equation
(continuous)
$r=$ growth rate
$\mathrm{C}=\mathrm{C}_{\mathrm{K} / 2}$ (i.e., t at which $\mathrm{N}(\mathrm{t})=\mathrm{K} / 2$)
Mathematical Tool $\log [(N(t) / K)-1]=r C_{k / 2}-r t \quad$ Logarithmic Transformation
Mathematical Model $\mathrm{N}_{\mathrm{t}+1}=\mathrm{N}_{\mathrm{t}} \mathrm{r}_{\text {difference }} \mathrm{N}_{\mathrm{t}}\left(\mathrm{K}-\mathrm{N}_{\mathrm{t}}\right) \quad$ Logistic Equation (discrete)
$r_{\text {difference }}=$ growth rate
$\mathrm{K}=$ carrying capacity

Recapitulation for section Ecosystem (environmental) - fractals, iteration, complex numbers

Fractal

entities that occupy or exhibit non-Euclidean dimension D
Iteration
repetitive process with which fractals can be created
e.g., the Mandelbrot Set is obtained by iterating $z_{n+1}=z_{n}^{2}+C$,
where z_{n+1} and C are complex numbers
Complex Numbers

$$
z=a+i b, \text { where } i=\operatorname{Sqrt}[-1]
$$

