A Hardy Population Genetics Problem Set for you to Wein(berg) about

1. Please state the Hardy-Weinberg rule in mathematical form, defining each variable as accurately and using as few words as you can.
2. Please state 6 conditions that are necessary to establish Hardy-Weinberg equilibrium, describing for each - as accurately and using as few words as you can - the level at which the condition applies (e.g., gene, trait, individual, population).

An antigen is a substance that can trigger an immune response, resulting in antibody production as a defense against infection and disease. Among the various antigens that reside on human red blood cells two comprise the M and N class. These antigens are used to define blood groups to conduct human population genetic analyses. Suppose that you were presented with the following blood-type data that were obtained from the inhabitants in an isolated, freakish population (e.g.,. professors at a retreat):

Individual Genotype	Frequency in Population
MM	406
MN	744
NN	332

3. Please demonstrate how to test whether this population were in Hardy-Weinberg equilibrium, describing as accurately and using as few words as you can each step in your demonstration.

Suppose that you were provided with additional data:

Genotypes for Mating Couples	Frequency in Population
MM \times MM	58
MM \times MN	202
MN \times MN	190
MM \times NN	88
MN \times NN	162
NN \times NN	41

4. Please state which among the conditions that you listed in responding to 2 you could test with these data.
5. Please perform the test that you identified in responding to 4.

Consider the following data concerning genotypes in 9 other freakish populations:

MM	MN	NN
0	0	100
0	100	0
4	32	64

25	25	5
25	5	25
33	33	33
5	25	25
64	32	4
986049	13902	49

6. Please calculate what commonly are called 'allele frequencies' for each population.
7. Please state which populations may be considered to be in Hardy-Weinberg equilibrium.

In sessions 28 and 29, we discussed situations in which the proportions for phenotypes corresponding to the genotypes AA, Aa, and aa within a population were weighted by absolute fitness values $\mathrm{W}_{\mathrm{AA}}, \mathrm{W}_{\mathrm{Aa}}$, and $\mathrm{W}_{\text {aa }}$.
8. Please state in algebraic terms the absolute fitness values for codominant selection in which advantages are conferred to individuals whose genotypes include the allele a.
9. Please define - as accurately and using as few words as you can - the terms in the equation $\mathrm{dq} / \mathrm{dt}=\mathrm{s}(1-\mathrm{q}) \mathrm{q}$ and provide a solution for it.
10. Please use the solution that you provided in responding to 9 to produce a plot for the case in which $s=0.01$ and, initially, $q=0.04$ and describe - as accurately and using as few words as you can - what that plot reveals.
11. Please describe how the plot that you produced in responding to 10 would change if the parameter s were to increase.
12. Please predict the time at which $q=0.5$ for the case in which $s=0.0317825$ and, initially, $q=0.04$.
13. Given that $p+q=1$, please use the equation that you provided in responding to 9 to obtain an equation for p.
14. Please describe how a plot for the case in which $s=0.01$ and, initially, $p=0.96$ would appear, using as few words as you possibly could and NO graphs.
15. Please identify a recent event that was covered by the media (e.g., Internet, television, or radio news broadcast) to which population genetic theory could be applied.

