1. a. $I=-\Delta S=S_{\text {initial }}-S_{\text {final }}=20$ * $-(1 / 20) \log [1 / 20]-1 \log [1]=\log [20] \approx 4.32$, where Log represents the logarithm using the base 2.
2. b. $I_{\text {denomiatior }}=-\Delta S=S_{\text {initial }}-S_{\text {final }}=4^{*}-(1 / 4) \log [1 / 4]-1 \log [1]=\log [4]=2$, where Log represents the logarithm using the base 2 ; so, ratio ≈ 4.32 / $2=2.16$. 1. c. smallest wordsize $=2.16$, which, with rounding to nearest larger natural number, is similar to codon basis that is observed in nature (wordsize $=3$).
3. a. $0.5(0.5) 0.5(0.5) 0.5=1 / 32$
b. identical to solution for a
c. $1 / 32+1 / 32=1 / 16$
d. $1-1 / 16=15 / 16$
4. $V=L^{3}$ and $S=6 L^{2}$

Let L represent diameter D; then, $D=6(V / S)$. Other choices for representing D will lead to other, analogous solutions.
4. a. $T=\pi D^{2} / 4=0.032 M^{1.00}$, so $D=((4(0.032) / \pi) M)^{1 / 2}=0.202 \mathrm{M}^{0.5}[\mathrm{~km}]$ or $202 \mathrm{M}^{0.5}[\mathrm{~m}]$
b. $(D / W) R=202 M^{0.5} /\left(0.33 M^{0.21}\right)\left(3.61 M^{-0.27}\right)=2208 M^{0.02}$
5. a. $r=\log [N(t) / N(0)] / t=\log [2] / 7=0.099$ days $^{-1}$ for Brittle and Log[1/2]/ $10=-0.069$ per day for Chrispy, where Log represents the logarithm using the base e.
b. Solve $2 e^{0.099 t}=10 e^{-0.069 t}$ for t to obtain $t=9.56$ days; then, use $t=9.56$ with either $2 \mathrm{e}^{0.099 \mathrm{t}}=10 \mathrm{e}^{-0.069 \mathrm{t}}$ to obtain $\mathrm{N}(9.56)=5.15 \mathrm{~kg}$.
c. Solve $2 \mathrm{e}^{0.099 \mathrm{t}}=2\left(10 \mathrm{e}^{-0.069 \mathrm{t}}\right)$ for t to obtain $\mathrm{t}=13.68$ days.
6.If Q_{i} small, then seek food; if Q_{i} large, then relax.
7. $a . f(G)=p=0.5=q=f(g)$
b. The $G G$ and $G g$ individuals will comprise 80% among all matings; among these,
$\mathrm{GG} \times \mathrm{GG}$ will comprise $(1 / 4)(1 / 4)=0.0625$
GG x Gg will comprise $2(1 / 4)(3 / 4)=0.3750$
$\mathrm{Gg} \times \mathrm{Gg}$ will comprise $(3 / 4)(3 / 4)=0.5625$
So, among all matings,
GG \times GG will constitute $0.0625(0.8)=0.05$
$\mathrm{GG} \times \mathrm{Gg}$ will constitute $0.3750(0.8)=0.30$
$\mathrm{Gg} \times \mathrm{Gg}$ will constitute $0.5625(0.8)=0.45$.
In the next generation,
$G G$ receive the 0.05 from $G G \times G G$ directly $+0.30 / 2$ from $G G \times G g+0.45 / 4$ from $G g \times G g=0.3125 ;$
$G g$ receive $0.30 / 2$ from $G G \times G g+0.45 / 2$ from $G g \times G g=0.375$

Gg receive $0.45 / 4$ from $\mathrm{Gg} \times \mathrm{Gg}+0.20$ from $\mathrm{gg}=0.3125$
8.

Aplantae comfortabolium
Arbour ingtostudii
Barkus biggerthanitsbitus
Elastic similaritus
Leavus aloneii
Xylem phloemus
9. Assume that the probability for yielding either gender $=1 / 2$; then the probability for obtaining 3 females and 2 males equals the ways to choose 3 females from 5 children $C[5,3]$ times $(1 / 2)^{5}=10 / 32$.
10. a. $P(100 b p)=0.995$ for $A A$ and 0.999 for AT.
b. $P(A A A$ in $100 b p)=0.699$ and $P(A A T$ in 100 bp$)=0.797$ in $D N A$ sequences with unbiased composition comprising 100 nucleotide bases.
c. $P(n)$ for k bp subsequences is minimal for the constant case (within a or within b comparisons); $\mathrm{P}(\mathrm{n})$ decreases as k increases (comparing a to b).

