$P(H \mid d)=P(d \mid H) P(H) / P(d)$

ontestant has no information concerning where the nice prize is, so
$P($ nice prize is behind door 1$)=1 / 3$
(nice prize is behind door 3) $=1 / 3$
(d| H)
Monty knows where the nice prize is, so
$P($ Monty has door 1 opened | hice prize is behind door 1$)=0$
P(Monty has door 1 opened | nice prize is behind door 2) =
$P($ Monty has door 1 opened | nice prize is behind door 3) $=1 / 2$
(Monty has door 2 opened nice prize is behind door 1)=
$P($ Monty has door 2 opened | nice prize is behind door 2) $=0$
$P($ Monty has door 2 opened | nice prize is behind door 3$)=1 / 2$ \mathbf{P} (Monty has door 3 opened \mid any condition) $=0$

```
(d | H) P(d) = 0(1/3
```

$\mathbf{P}(\mathbf{H} \mid \mathrm{d})=\mathbf{P}(\mathbf{d} \mid \mathbf{H}) \mathbf{P}(\mathbf{H}) / \mathbf{P}(\mathbf{d})=\mathbf{P}(\mathbf{d} \mid \mathbf{H}) \mathbf{P}(\mathbf{H}) /(\mathbf{P}(\mathbf{d} \mid \mathbf{H}) \mathbf{P}(\mathbf{H})+\mathbf{P}(\mathbf{d} \mid \sim H) \mathbf{P}(\sim \mathbf{H}))$

	nice prize is behind	
door 2		door 3
$1 / 3)$	$(1)(1 / 3)$	$(1 / 2)(1 / 3)$
$1 / 3)$	$(0)(1 / 3)$	$(1 / 2)(1 / 3)$
	$1 / 3$	$1 / 3$

Monty opens door 1 Monty opens door 2
Total
Note that the totals are consistent with the initial situation from the contestant's Informational perspective.

P(nice prize is behind door 3 and Monty opens door 1)/P(Monty opens door 1) $=(1 / 6) /(0+(1 / 3)+(1 / 6))=1 / 3$

P (nice prize is behind door $2 \mid$ Monty opens door 1)
$=P($ nice prize is behind door 2 and Monty opens door 1$) / P($ Monty opens door 1$)$ $=(1 / 3) /(0+(1 / 3)+(1 / 6))=2 / 3$ \qquad
\qquad

TRIGONOMETRY \& STEREOLOGY

\qquad
\qquad
\qquad
\qquad

Buffon Needle Problem

TRIGONOMETRY

$\operatorname{Sin}[\theta]$
' $\mathrm{s}=\mathrm{oh}$ '
$\operatorname{Sin}[0]=0$
$\operatorname{Sin}[\pi / 4]=1 / \operatorname{Sqrt}[2]$

$\operatorname{Sin}[\pi / 2]=1$
$\operatorname{Sin}[\pi / 6]=1 / 20.5$
$\operatorname{Sin}[\pi / 3]=\operatorname{Sqrt}[3] / 2$
${ }_{-0.5}^{-1}$

\qquad
\qquad
\qquad
\qquad
\qquad

STEREOLOGY

\qquad
studying 3D from lower dimensions \qquad
Delesse 1847 \qquad
geologist
volume fraction = area fraction \qquad
$V_{v}=A_{A}$
is shape-independent \qquad
is distribution independent is obtainable via unbiased, \qquad multiple samples \qquad

DELESSE PRINCIPLE

A_{A}
enumerate squares within a grid cut and weigh hardcopy images

Rosiwal 1898
geologist
linear fraction \qquad
$A_{A}=L_{L}$
$V_{V}=A_{A}=L_{L}$

SCOTCH EGG

"a hard-boiled egg that is 'coated' with sausage, dipped into beaten egg, rolled in bread crumbs and deep-fried"
\qquad
\qquad
\qquad
\qquad
\qquad

SCOTCH EGG yoLk

cut into infinitely many extremely thin slices
summing the areas A_{A} must yield V_{V}
unit-thick slices (or unit-wide lines)
\qquad
\qquad
\qquad
\qquad
area within = volume within (or fraction)
imagine 1000 Scotch eggs in a deep fryer take an unbiased planar section
\qquad
\qquad
\qquad

