
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MENDEL'S THEORY

\qquad
was formulated from proper scientific \qquad
technique; Mendel
chose appropriate research material
carefully designed experiments
collected data
analysed data to test hypotheses

MENDEL'S EXPERIMENTS 1

the garden pea Pisum sativum is
variable
self-pollinating
inexpensive, available, spatially and temporally efficient to grow, fecund

MENDEL'S EXPERIMENTS 2

involved
pure lines (2 years) - control
properties (phenotypes)
round OR wrinkled ripe seed inflated OR pinched ripe pods green OR yellow unripe pods axial OR terminal flowers long or short stems purple OR white petals \qquad yellow OR green seed interiors

MENDEL'S EXPERIMENTS 3

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MENDEL'S OBSERVATIONS 1

```
P Yellow x green x yy
F1 Yellow y
F2 6022 Yellow, 2001 green / y, yy
F3 Yellow, Yellow & green , y & yy
model tested with }\gamma>\mathbf{x}\mathrm{ yy
```


MENDEL'S LAWS 1

Equal Segregation
gene pair members segregate from each other into gametes, so that half carry one and half carry other member

GENE NOMENCLATURE

the normal phenotype is called the 'wild type' genes are symbolised on the basis of the first mutant that is observed
recessive, lowercase; Dominant, uppercase the wild type symbol is superscripted with +
(e.g., $\mathrm{Cy}^{+} \mathrm{Cy}^{+}$normal straight wing genotype $w^{+} \quad$ normal red eye allele)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
MENDEL'S EXPERIMENTS 4

P	RRyy	x
F	$r r Y Y$	
F 1	RrYy	

F2 315 Round Yellow
101 wrinkled Yellow
108 Round green
32 wrinkled green
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MENDEL'S OBSERVATIONS 2

\qquad
$\mathrm{P} \quad$ RRyy $\mathrm{x} \quad r r Y Y$ \qquad
F1 RrYy
F2 315 Round Yellow 9
101 wrinkled Yellow 3
108 Round green 3
32 wrinkled green 1
Round:wrinkled = 3:1 = Yellow:green

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MENDEL'S \& PROBABILITY
 LAWS RULES

Equal Segregation and $P(i)=n_{i} / n$
$P(Y)=1 / 2=P(y)$
Independent Assortment \& $\mathbf{P}(\mathbf{i}$ and j$)=\mathbf{P}(\mathbf{i})$ P(j)
$P(r r y y)=1 / 16=P(r) P(r) P(y) P(y)$

