

The probability for a 2-nucleotide-base subsequence occurring within an nnucleotide base DNA sequence:

$\mathbf{S}=\mathbf{X Y}$,
$P(n)=1-\left(\frac{1}{2}+\frac{1}{\sqrt{3}}\right)\left(\frac{1}{2}+\frac{\sqrt{3}}{4}\right)^{\mathrm{n}}-\left(\frac{1}{2}-\frac{1}{\sqrt{3}}\right)\left(\frac{1}{2}-\frac{\sqrt{3}}{4}\right)^{\mathrm{n}}$
$\mathbf{S}=\mathbf{X X}$,
$\mathrm{P}(\mathrm{n})=1-\left(\frac{1}{2}+\frac{5}{2 \sqrt{21}}\right)\left(\frac{3}{8}+\frac{\sqrt{21}}{8}\right)^{\mathrm{n}}-\left(\frac{1}{2}-\frac{5}{2 \sqrt{21}}\right)\left(\frac{3}{8}-\frac{\sqrt{21}}{8}\right)^{\mathrm{n}}$

PROBABILITY \& DNA

alphabet A containing $L>1$ symbols
DNA: $A=\{A, C, G, T\}, L=4$ \qquad
subsequence S, length k \qquad
sequence, length $\mathbf{n} \geq k$
$P(n)$ for S as subsequence in sequence
\qquad
\qquad
\qquad
\qquad
\qquad

$$
S=s_{1} s_{2} \ldots s_{k}
$$

S self-overlapping with shift w
$\mathbf{s}_{1}=\mathbf{s}_{1+\mathrm{w}}, \mathbf{s}_{\mathbf{2}}=\mathbf{s}_{2+\mathrm{w}}, \ldots, \mathbf{s}_{\mathrm{k}-\mathrm{w}}=\mathbf{s}_{\mathrm{k}}$
non-self-overlapping case

$$
\frac{\mathbf{s}_{1} \mathbf{s}_{\mathbf{2}} \ldots \mathbf{s}_{\mathbf{k}} * * *}{L^{-k}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
non-self-overlapping case \qquad

$\frac{\mathrm{s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{k}} * * *}{\mathrm{~L}^{-k}}$
$\frac{* \mathrm{~s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{k}} * * *}{\mathrm{P}(\mathrm{n}-1)}$
$\frac{\mathrm{s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{k}} \mathrm{s}_{\mathrm{k}+1} * * *}{\mathrm{~L}^{-\mathrm{k}}} \frac{\mathrm{P}(\mathrm{n}-\mathrm{k})}{}$
$\mathrm{L}^{-\mathrm{k}}+\mathrm{P}(\mathrm{n}-1)-\mathrm{L}^{-\mathrm{k}} \mathrm{P}(\mathrm{n}-\mathrm{k})$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
GENERAL CASE
```



```
    S self-overlapping with shift w
S=S,}\mp@subsup{S}{2}{}\ldots\mp@subsup{S}{m}{
Si
S = ACAACATACAACATACAACA
S = ACAACAT ACAACAT ACA AC A
    w
```


General Case

$P(n)=L^{k}+\sum_{j=1}^{m}\left(L^{w_{j-1}} P\left(n-w_{j 1}-1\right)-L^{-w_{j}} P\left(n-w_{j}\right)\right)$

$$
\begin{aligned}
& \text { non-self-overlapping case, } \mathbf{m}=\mathbf{1}, \mathbf{w}_{\mathbf{1}}=\mathbf{k} \\
& \begin{aligned}
& P(n)=L^{-k}+\sum_{j=1}^{m}\left(L^{-w_{j-1}} P\left(n-w_{j-1}-1\right)-L^{-w_{j}} P\left(n-w_{j}\right)\right) \\
&\left.\left.={ }^{-k}+{ }^{-w_{0}}--_{0}^{-w_{1}}-w_{1}\right)\right) \\
&= L^{-}+\left(L^{0} P(n-1)-L^{-k} P(n-k)\right) \\
&=L^{-k}+P(n-1)-L^{-k} P(n-k) \\
& w_{0}=\mathbf{0}, \mathbf{w}_{\mathbf{m}}=\mathbf{k}
\end{aligned}
\end{aligned}
$$

Recursion formula may be used to set lower and upper bounds for $P(n)$

For fixed $\mathrm{k} \leq \mathbf{n}$,
$P(n)$ minimal if S is constant
$P(n)$ maximal if S is non-self-overlapping otherwise strictly between these extremes*
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Recursion formula may be implemented as computer algorithm
\qquad
\qquad
Eigenvalue eigenvector analysis enables calculation of $P(n)$
'Dupcheck'
Windows, Macintosh, Linux
Maple, Mathematica, Matlab

EXAMPLE

TATAA = eukaryotic TATA box
$P(500)=0.385231$
$P(711)=0.5$
$P(5000)=0.992557$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
EXAMPLE

$\mathrm{P}(\mathrm{n})=0.5$	n
TATAA	711
TCCCCG	2841
ACCAAAA	11361
TTCCCCGAA	181707

\qquad

USEFUL HEURISTIC

given $P(n)$ and $r>1$
if $r P(n)$ is 'small,'
then $P(r n) \approx r P(n)$
non-self-overlapping string $\mathbf{k}=\mathbf{2 4}$
$P(10000)=0.354454244 \times 10^{-10}$
$P(100000)=0.355189655 \times 10^{-9}$

