

PHYLOGENETIC SYSTEMATIC ANALYSIS

original

'plesiomorphic'

derived unique shared 'apomorphic''autapomorphic''synapomorphic'

group 'clades' according to synapomorphic character states

CLADISTIC METHODOLOGY

- 1.assess consistent characters, starting with the most-inclusive ones
- 2. assess mutually inconsistent characters, starting with the most-numerous types
- 3. include other characters (e.g., those comprising autapomorphic character states)

		-
SET THEORY		
OG1	00000 00000 00	
OG2	00000 00000 00	
S	10111 11010 00	
t	11111 10001 00	
u	10110 00000 00	
v	11000 01100 10	
w	11000 01100 01	
clades		
intersections		
Venn diagrams		
	U	-

COMBINATORICS PREAMBLE

Suppose one were to choose k from n objects

1st object yields n choices 2nd object yields (n - 1) choices 3rd object yields (n - 2) choices

... kth object yields (n - k + 1) choices

Thus, choosing k from n objects yields n (n - 1) (n - 2) ... (n - k + 1) possibilities

FACTORIALS

n! = n (n - 1) (n - 2) ... 3, 2, 1

n (n - 1) (n - 2) ... (n - k + 1) =

n! / ((n - k) (n - k - 1) (n - k - 2) ... 3, 2, 1) =

n!/(n - k)!

COMBINATORICS C[n, k]

choosing k from n objects yields n (n - 1) (n - 2) ... (n - k + 1) = n! / (n - k) ! possibilities

n! / (n - k)! includes all orderings

if one were interested only in different possibilities, one would have to divide out the possible arrangements k!

C[n, k] = n! / ((n - k)! k!)

BINOMIAL DISTRIBUTION

e.g., flipping a fair coin many times

each time perform n flips and obtain k Tail outcomes

1 = Σ C[n, k] P(H)^{n-k} P(T)^k, k = 0, ..., n

17 flips, 14 Tails outcomes

C[17, 14] (0.5)¹⁷⁻¹⁴ (0.5)¹⁴

