PHYLOGENETIC SYSTEMATICS \& SET THEORY

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PHYLOGENETIC SYSTEMATIC ANALYSIS

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad character states
\qquad

CLADISTIC METHODOLOGY

1.assess consistent characters, starting with the most-inclusive ones
2. assess mutually inconsistent characters, starting with the most-numerous types
3. include other characters (e.g., those comprising autapomorphic character states)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad intersections Venn diagrams \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMBINATORICS PREAMBLE

\qquad
Suppose one were to choose k from n objects \qquad
$1^{\text {st }}$ object yields n choices \qquad
$2^{\text {nd }}$ object yields ($n-1$) choices
$3^{\text {rd }}$ object yields $(n-2)$ choices \qquad
...
$k^{\text {th }}$ object yields $(n-k+1)$ choices \qquad
Thus, choosing k from \mathbf{n} objects yields \qquad $n(n-1)(n-2) \ldots(n-k+1)$ possibilities
\qquad

FACTORIALS

```
n!=n(n-1)(n-2) .. 3, 2,1
n(n-1)(n-2) ..(n-k + 1) =
    n!/ /(n-k)(n-k-1)(n-k-2)\ldots3,2,1)=
    n!/(n-k)!
```


COMBINATORICS C[n, k]

choosing \mathbf{k} from \mathbf{n} objects yields $n(n-1)(n-2) \ldots(n-k+1)=n!/(n-k)!$ possibilities
$n!/(n-k)$ includes all orderings \qquad
if one were interested only in different possibilities, one would have to divide out the possible arrangements k ! \qquad
$C[n, k]=n!/((n-k)!k!)$

BINOMIAL DISTRIBUTION

e.g., flipping a fair coin many times \qquad
each time perform n flips and obtain \qquad k Tail outcomes
$1=\Sigma C[n, k] P(H)^{n-k} P(T)^{k}, k=0, \ldots, n$
17 flips, 14 Tails outcomes
$C[17,14](0.5)^{17-14}(0.5)^{14}$

