

SAMPLE

objects that are collected for study
each member possesses properties, which may be quantitative discrete
(e.g., savannah elephants
gender, weight, teeth)

PROBABILITY THEORY 1

$P(\mathrm{j})=\mathrm{n}_{\mathrm{j}} / \mathrm{n}$
n_{i} enumerates members that are known to exhibit property \mathbf{j}
n enumerates members in sample
(e.g., savannah elephants with 6 teeth)
\qquad

INFORMATION

conditions probabilities
can enable absolute $P(j)$ s to be used (i.e., if information is complete)
(e.g., biased flipping coin)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PROPERTIES 1

Mutually Exclusive

j, k: no member can possess both \qquad
$P(j$ or $k)=n_{j \text { or } k} / n=P(j)+P(k)$
$\mathbf{P}(\sim \mathrm{j})=\mathrm{n}_{\sim \mathrm{j}} / \mathrm{n}=\mathbf{1}-\mathrm{P}(\mathrm{j})$ \qquad
\qquad

PROBABILITY THEORY 2

Normalised

\qquad

$$
P(0)+P(1)+P(2)+\ldots=\Sigma P(j)=1
$$

if $P(j) \propto f(j)$, then normalisation can be achieved

$$
\begin{aligned}
& P(\mathrm{j})=c \mathrm{f}(\mathrm{j}) \\
& c=1 / \Sigma \mathrm{f}(\mathrm{j})
\end{aligned}
$$

```
PROPERTIES 2
Correlated
    j, k: knowledge about one affects
    probability distribution for the other
Uncorrelated (Independent)
```

 \(P(j)=c f(j)\) whatever value \(k\) is known to
 exhibit
 | | TEETH | | |
| :--- | :--- | :---: | :--- |
| AGE | 2
 $P(2)$ | 4 | 6 |
| 10 | $P_{10 \text { and } 2}$ | $P_{10 \text { and } 4}$ | $P_{10 \text { and } 6}$ |
| 20 | $P_{20 \text { and } 2}$ | $P_{20 \text { and } 4}$ | $P_{20 \text { and } 6}$ |
| 30 | $P_{30 \text { and } 2}$ | $P_{30 \text { and } 4}$ | $P_{30 \text { and } 6}$ |
| 40 | $P_{40 \text { and } 2}$ | $P_{40 \text { and } 4}$ | $P_{40 \text { and } 6}$ |
| 50 | $P_{50 \text { and } 2}$ | $P_{50 \text { and } 4}$ | $P_{50 \text { and } 6}$ |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PROBABILITY THEORY 3

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PROPERTIES \& PROBABILITIES
Independent
$P(j)=n_{j} / n=n_{j \text { and } k} / n_{k}$
$P(j$ and $k)=P(j) P(k)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

