FRACTALS \& DIMENSIONS

\qquad
\qquad
\qquad
\qquad coastline length
\qquad
\qquad

FRACTALS

Mandlebrot 1977
wrote The Fractal Geometry of Nature described reality as nonEuclidean proposed fractal from fractus = to break
fractal
shapes are described with reference to dimension
e.g., lightning bolts, dendrites, branchioles, cauliflower, stock-market indices

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

D

D $=-\log [\mathrm{N}] / \log [r]$ \qquad
D $=-\log [3] / \log [1 / 3]$ (1-D)
$D=-\log [9] / \log [1 / 3]$ (2-D)
$\mathrm{D}=-\log [27] / \log [1 / 3](3-\mathrm{D})$
D is a noninteger number for fractals

CANTOR SET

iterative construction

remove middle-third from the interval
\qquad
[0,1]
remove middle-third from remaining intervals
repeat
关
2^{2} line segments occupying
(2 / 3) ${ }^{n}$ total length, so each occupies
(1/3) ${ }^{\mathrm{n}}$ length

KOCH SNOWFLAKE

iterative construction remove middle-third from equilateral triangle edges
fill gap with another equilateral triangle repeat
properties (at $\mathbf{n}^{\text {th }}$ iteration)
34^{n} sides, each spanning
3^{-n} units, so the total perimeter is
3 (4/3) ${ }^{\text {n }}$ units
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SIERPINSKI CARPET

iterative construction
remove middle-third from a square remove middle-third from remaining squares
repeat

\qquad
properties (at $\mathrm{n}^{\text {th }}$ iteration)
8^{n} black boxes, each with side length 3^{-n} units, so the fractional area covered is ($8 / 9)^{n}$ units

MENGER SPONGE

3-D analogue for Sierpinski Carpet

properties (at $\mathrm{n}^{\text {th }}$ iteration)
20^{n} filled boxes, each with hole side length
3^{-n} units, so the fractional volume occupied is
($8 / 9)^{n}$ units

