FRACTALS & DIMENSIONS

coastline length

FRACTALS

Mandlebrot 1977

wrote *The Fractal Geometry of Nature* described reality as nonEuclidean proposed fractal from *fractus* = to break

fractal

shapes are described with reference to dimension

e.g., lightning bolts, dendrites, branchioles, cauliflower, stock-market indices

D

D = - Log[N] / Log[r] D = - Log[3] / Log[1 / 3] (1-D) D = - Log[9] / Log[1 / 3] (2-D) D = - Log[27] / Log[1 / 3] (3-D)

D is a noninteger number for fractals

CANTOR SET

iterative construction remove middle-third from the interval [0, 1] remove middle-third from remaining intervals repeat

properties (at nth iteration) 2ⁿ line segments occupying (2 / 3)ⁿ total length, so each occupies (1 / 3)ⁿ length

KOCH SNOWFLAKE

iterative construction remove middle-third from equilateral triangle edges fill gap with another equilateral triangle repeat

properties (at nth iteration) 3 4ⁿ sides, each spanning 3⁻ⁿ units, so the total perimeter is 3 (4 / 3)ⁿ units

SIERPINSKI CARPET

iterative construction remove middle-third from a square remove middle-third from remaining squares repeat

properties (at nth iteration) 8ⁿ black boxes, each with side length 3⁻ⁿ units, so the fractional area covered is (8 / 9)ⁿ units

MENGER SPONGE

3-D analogue for Sierpinski Carpet

properties (at nth iteration) 20ⁿ filled boxes, each with hole side length 3⁻ⁿ units, so the fractional volume occupied is (8 / 9)ⁿ units