
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

INFORMATION THEORY
Information
Computational Biology \qquad
system
observation, experiment abstraction analysis/modeling/simulation \qquad
\qquad

PROBABILITY

System, States
(e.g., particles in 'ideal gas' with $\mathbf{v = 2} \mathbf{~ m s}$ savannah elephants with 6 teeth)
initially G states available, $P\left(\mathrm{~J}_{\mathrm{i}}=1 / \mathrm{G}\right.$ \qquad
finally H states available, $\mathrm{P}(\mathrm{j})_{\mathrm{f}}=1 / \mathrm{H}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LOGARITHMS

$\log _{\mathrm{b}}[\mathrm{Z}]$: the exponent that base b must be raised to obtain Z
e.g., $\log _{10}[100]=2 ; \log _{2}[32]=5$
$\log _{b}[G / H]=\log _{b}[G]-\log _{b}[H]$
$\log _{b}[1]=0$

\qquad
\qquad
\qquad
\qquad
\qquad
$\log _{b}[b]=1$ \qquad
\qquad

INFORMATION

Binary Information Unit (bit)
$\mathbf{1}$ bit = the information that is required to
choose between 2 equiprobable
events
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
PROBABILITY & INFORMATION
G/2'=H
2'=G / H
I = (\mp@subsup{\operatorname{Log}}{10}{[G] / Log}
I = - \Sigma(P(j)}\mp@subsup{)}{\textrm{i}}{\mp@subsup{\operatorname{Log}}{2}{}[P(j)}\mp@subsup{)}{\textrm{i}}{}])+\Sigma(P(\textrm{j}\mp@subsup{)}{\textrm{f}}{}\mp@subsup{\operatorname{Log}}{2}{[P(j)
    S = - \Sigma(P(j) Log
I = -\DeltaS = S S - S S
```


A FLIPPING FAIR COIN

$$
\begin{array}{ll}
\text { e.g., } P(H)_{i}=0.5 & P(T)_{i}=0.5 \\
P(H)_{f}=1 & P(T)_{f}=0 \\
I=-\Delta S=S_{i}-S_{f} \\
I=\log _{2}[2]+\log _{2}[1]=1 \text { bit }
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
1 bit is required to reduce the initial \qquad state to the final state

MINIMUM INFORMATION

Maximum Ignorance I

```
maximise \(I=\Sigma\left(P(j) \log _{2}[P(j)]\right)\), sum over \(G\)
```

$\Sigma P(\mathrm{j})=1$, sum over G
\qquad
$P(G)=1-\Sigma P(j)$, sum over $G-1$
$\mathrm{I}=\Sigma\left(\mathrm{P}(\mathrm{j}) \log _{2}[\mathrm{P}(\mathrm{j})]\right)+\mathrm{P}(\mathrm{G}) \log _{2}[\mathrm{P}(\mathrm{G})]$

> MAXIMUM IGNORANCE $\begin{aligned} & \mathrm{I}=\Sigma\left(\mathrm{P}(\mathrm{j}) \log _{2}[P(\mathrm{j})]\right)+\mathrm{P}(\mathrm{G}) \log _{2}[\mathrm{P}(\mathrm{G})] \\ & \left(\begin{array}{l}(\delta / \delta P(k)) \mathrm{I}\end{array}\right. \\ & (\delta / \delta P(\mathrm{k}))\left(\mathrm{P}(\mathrm{k}) \log _{2}[P(\mathrm{k})]+\mathrm{P}(\mathrm{G}) \log _{2}[\mathrm{P}(\mathrm{G})]\right) \\ & 0 \quad=\log _{2}[\mathrm{P}(\mathrm{k})]+1-\log _{2}[\mathrm{P}(\mathrm{G})]+-1 \\ & 0 \quad=\log _{2}[P(\mathrm{k})]-\log _{2}[\mathrm{P}(\mathrm{G})] \\ & \mathrm{P}(\mathrm{k})=\mathrm{P}(\mathrm{G})\end{aligned}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

INFORMATION \& PROBABILITY

Equiprobable states entail that
$P(k)=P(G)$ \qquad
all Ps are equal at the minimum information configuration
to weight any P differently would require information
\qquad
\qquad
\qquad
(e.g., flipping a biased coin)

