INFORMATION & PROBABILITY

INFORMATION THEORY

Information

Computational Biology system observation, experiment abstraction analysis/modeling/simulation

PROBABILITY

System, States

(e.g., particles in 'ideal gas' with v = 2 ms⁻¹ savannah elephants with 6 teeth)

initially G states available, P(j)_i = 1 / G

finally H states available, P(j)_f = 1 / H

INFORMATION	
Binary Information Uni	t (bit)
1 bit = the informa choose betwe events	tion that is required to een 2 equiprobable
bits received	P(j)
1	G / 2
2	G / 4
	G / 2'

PROBABILITY & INFORM	ATION
----------------------	-------

 $G / 2^{i} = H$

2^I = G / H

$$I = (Log_{10}[G] / Log_{10}[2]) - (Log_{10}[H] / Log_{10}[2])$$

$$I = -\Sigma (P(j)_i \operatorname{Log}_2[P(j)_i]) + \Sigma (P(j)_f \operatorname{Log}_2[P(j)_f])$$

 $\mathsf{S} = - \Sigma \left(\mathsf{P}(\mathsf{j}) \, \mathsf{Log}_2[\mathsf{P}(\mathsf{j})]\right)$

 $I = -\Delta S = S_i - S_f$

A FLIPPING FAIR COIN

e.g., $P(H)_i = 0.5$ $P(T)_i = 0.5$

 $P(H)_{f} = 1$ $P(T)_{f} = 0$

 $I = -\Delta S = S_i - S_f$

 $I = Log_2[2] + Log_2[1] = 1bit$

1 bit is required to reduce the initial state to the final state

MINIMUM INFORMATION

Maximum Ignorance I

maximise I = Σ (P(j) Log₂[P(j)]), sum over G

 $\Sigma P(j) = 1$, sum over G

 $P(G) = 1 - \Sigma P(j)$, sum over G - 1

 $I = \Sigma (P(j) \text{ Log}_2[P(j)]) + P(G) \text{ Log}_2[P(G)]$

MAXIMUM IGNORANCE

 $I = \Sigma (P(j) Log_2[P(j)]) + P(G) Log_2[P(G)]$

 $(\delta / \delta P(k)) I =$ $(\delta / \delta P(k)) (P(k) Log_2[P(k)] + P(G) Log_2[P(G)])$

 $0 = Log_2[P(k)] + 1 - Log_2[P(G)] + -1$

 $0 = Log_2[P(k)] - Log_2[P(G)]$

P(k) = P(G)

INFORMATION & PROBABILITY

Equiprobable states entail that

P(k) = P(G)

all Ps are equal at the minimum information configuration

to weight any P differently would require information

(e.g., flipping a biased coin)