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Abstract

Complexity of system organization involves hierarchy of structure. The hierarchy of structure emerges from the integration

of components. Irrespective of the mode of system description, integration determines the hierarchy of the system and hence its

effective complexity. Because hierarchy and integration are intrinsic features of ecological systems, they can serve to advance

understanding of general properties of such systems. As hierarchical structure affects system assembly and repair, integration

becomes a major determinant of such process. To demonstrate potential applications, I develop a quantitative model, grounded

in the blind watchmaker analogy. This model shows that while hierarchical organization accords a substantial improvement in

ability of a system to assemble or repair itself over a non-hierarchical assembly process, this improvement greatly depends on the

interplay among three variables—the probability of perturbation, mean size of the subassembly, and the degree of integration.

Specifically, high integration reduces time required to assemble (or repair) a system but it also demands higher levels of

modularity (compartmentalization of interactions). In ecological terms, highly integrated systems should evolve towards

increased specialization and compartmentalization (low direct connectivity), particularly in habitats where perturbation is

locally infrequent.
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1. Introduction

Intuitively, ecologists recognize complexity as a

challenging and critical factor with important reper-

cussions for both research and, more importantly, the

dynamics of ecological systems. Revived research into

diversity-stability (e.g., McCann, 2000; Kolasa and Li,
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2003) and ecosystem function-stability relationships

(e.g., Loreau et al., 2001; Grime, 1997; Wardle et al.,

2000) offer a case in point. Quantification of

biodiversity, prediction of species interaction out-

comes, and generalizations about the effects of spatial

and temporal heterogeneity on a range of ecological

phenomena intricately tie with the notion of complex-

ity. A variety of definitions of complexity exist (see

Rosen, 1991; Collot, 1995; Ahl and Allen, 1996; de

Wailly, 1998; Ricard, 2003; Solé and Goodwin, 2000;
d.
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Jørgensen, 2002 for some examples) but commonly

comprise two aspects: complicatedness (the number of

different elementary components), and hierarchical

complexity (the number of hierarchical levels these

components are arranged in) (see Allen et al., 1984;

Allen and Hoekstra, 1992; Nehaniv and Rhodes, 2000;

Van de Vijver et al., 2003 for more details).

Irrespective of the preferred definition of complex-

ity, the concept contains an implicit, fundamental

premise: whether functional or structural, the main-

tenance of a particular system topology (i.e. the

maintenance of components in specific relationship to

each other) involves hierarchy. Hierarchy arises

whenever subsystems interact and form a system

with new properties not additive from the properties of

parts (see Li, 2000 for mathematic proof). Scientific

literature recognizes hierarchical structure as the

ubiquitous mode by which both natural and artificial

systems are organized. In fact, the hierarchical nature

of ecological systems is commonly taken for granted,

as a perusal of current literature indicates, and gives

the rise to the perception of their complexity. Thus, a

germane question emerges: if hierarchical organiza-

tion is inherent to complex systems, what makes

complex systems hierarchical? Equivalently, we can

ask: what are the general mechanisms leading to

formation of higher level entities from individual

components of the lower level? The answer leads to an
Fig. 1. Relationship between integration of components and system hierar

integrate into higher level systems and form a corresponding hierarchical s

than any component above them. The decreasing shading of successive enve

(cf. Kolasa and Pickett, 1989).
examination of interaction between hierarchy, com-

plexity, and perturbation—the main focus of the paper.

Integration as the crucial element of the answer

appeared long time ago (Spencer, 1966). More

recently, Kolasa and Pickett (1989) linked a gradient

of integration to the hierarchical structure of

biological systems but without further exploration

of its consequences. They defined integration as an

aggregate index reflecting both (i) the degree of

coordination among components of a system and (ii)

the rate of change those components undergo, with

greater coordination indicating higher integration and

greater degree of change of lower level components

indicating lower integration.

Simply stated, integration captures the notion that

components of a system must show some bond for the

system to exist (see also Ricard, 2003) and the logical

necessity that the absence of bond (=relations) implies

absence of a system (cf. Mahner, 1998). We can

represent such a bond as an additional boundary or

envelope around the components (Fig. 1). Each new

envelope then corresponds to a new hierarchical level.

This basic arrangement is both common to ecological

systems and potentially relevant to deeper under-

standing of their static and dynamic properties such as

growth, maintenance, or recovery after perturbation.

Integrated ecological systems assume a wide range

of material expressions. Tight symbiotic systems in
chical structure. (a) Material systems (grey circles) can coalesce or

tructure (b). Note that lower level components change at a faster rate

lopes corresponds to decreasing integration of higher level structures
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observed in corals and lichens resemble individual

organisms while in fact consist of individuals of

different species. Unrelated or related individuals such

as social insects, a goby and a shrimp, a pack of

wolves, or migrating lobsters form integrated groups

at small spatial scales. At larger scales, more diffused

entities, populations, show a recognizable degree of

interactivity and cohesion. Food webs show a

signature of integration as demonstrated by the

presence of highly connected nodes, particularly at

higher trophic levels, which resemble other complex

network topologies (Solé and Montoya, 2001). In

addition to the gradient of system integration

correlated with spatial and temporal scales, integration

emerges in connection with ecosystem properties like

nutrient cycling and energy flow: as ecosystems

develop, material cycles become increasingly inter-

nalized and closed.

In spite of the recognition that ecological systems

are complex and that integration is an important aspect

of that complexity, the interaction of complexity and

integration and its ecological implications remains

largely unexplored. Specifically, we know little about

how integration affects the ability of a biological

system to resist a disruptive external factor or to re-

assemble itself in case of the structural disruption.

This paper addresses these questions in two steps. In

the first section, I present pertinent terminology and

review several qualitative relations among concepts

and variables used here. The aim of the first section is

to facilitate the presentation of the second, quantitative

section, where I explore the relationship between the

level of integration of systems’ hierarchical structure,

and its effect on system response to perturbation.
2. Qualitative notes on integration

2.1. Integration and hierarchy

While Allen and Starr (1982) brought the concept

of near-decomposability of structure to ecologists, it

has not been used in ecological research or discourse

to the same extent as scale and hierarchy have been.

According to (Simon, 1973), if systems were

completely decomposable, there would be no emer-

gent whole (and thus no integration), because the parts

would exist in isolation. Thus, the ‘‘near’’ in ‘‘near-
decomposable’’ allows the upper level to emerge from

the condition that the parts are not completely

separate. The agent that makes parts near-decom-

posable or ‘not completely separate’ is integration: a

dynamic combination of forces and mechanisms that

bind parts together into a higher level system. One can

portray integration as envelopes around elementary

components of a lower level in the structure (Fig. 1)

without, however, implying that such envelopes

always have a material form. A pair of breeding birds

is a higher level system composed of two individuals:

while the individuals have skin that holds anatomical

parts together, the pair itself has no such physical

boundary, at this scale of observation. The bond they

form emerges from their mutual response to each

other’s actions (Kolasa and Pickett, 1989). This

reliance on the mutual response as a criterion has

gained further support in the theoretical work by

Langton (1992). He analyzed cooperation between

cells in a computer model and emphasized the need for

the two cells to recognize and respond to each others’

states for complexity to arise (Langton, 1992). He

further saw the gradational nature of this cooperation,

which could range from low (the two cells remain

virtually independent) to high values (the two cells

becoming de facto one).

In brief, I start with the premise that hierarchy

emerges through the integration of lower level

components into higher level entities (Kolasa and

Pickett, 1989). Although it is difficult to conceive a

simple indicator or measure of integration, a number

of its correlates can assist in gauging the magnitude of

integration:
a. C
oordination—coordination has a specific defini-

tion as a condition where one component responds

to the action of another component at the same

level such that the combined system persists

(Kolasa and Pickett, 1989). There can be no

integration without coordination, and, thus, coor-

dination is of foundational importance in the

emergence of hierarchical structures (Spencer,

1966). The breeding bird pair illustrates this point:

coordination of behavior between the two birds

leads an external observer to conclude that the pair

is an integrated system.
b. E
xclusiveness of interactions—components of the

higher level system have specific interactions with
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one another. This condition helps the system to

maintain its individuality vis-à-vis other entities of

the same level. A breeding pair of birds where two

individuals recognize each other, a colony of social

insects where individuals of one colony act

cooperatively but attack intruders, and an obliga-

tory pollinator–plant mutualism illustrate this point

sufficiently.
c. ‘
Interaction density’—the relative number of

internal versus external interactions. Interaction

density increases with integration and quantifies

the observation that the mean number of interac-

tions among components of a higher level entity is

greater from the mean number of interactions all

these components engage in with their equivalents

outside the parent entity.
d. S
ubstitutability of parts—refers to the potential for

one lower level system component to be effectively

replaced by something else. To some degree, this

measure is related to exclusiveness of interactions,

but emphasizes the uniqueness of the whole system

in the context of other systems of the same kind.

Substitutability of parts declines with integration.
e. P
roximity in space and time—is a required but not a

sufficient condition of integration. For systems of

the same kind, one that has components in greater

proximity is more integrated.
f. A
utonomy of parts—declines with integration.

When the autonomy of parts is at its maximum,

no integrated material system exists (the system

can be completely decomposed). When the

autonomy of parts is at its minimum, the system

is maximally integrated (see ‘effective complexity’

below).
g. C
oherence—quasi-instant ‘‘non-local’’ correlation

among parts of the observed systems (Laszlo,

2004). Coherence means that what happens in and

to one of the system’s parts, it also happens in all its

other parts and hence indicates the wholeness of the

system. Low coherence implies low integration.

Ecologists use most of these criteria either directly or

in guise of other terms. For example, coordination at the

community level may be quantified, depending on

specific research goals: at the level of the individual by

covariance or partial correlation matrices; at the

population level by gene flow, reproductive synchrony,

or cohesion (e.g., Earn et al., 2000); at the ecosystem
level by metrics of nutrient cycles. Exclusiveness of

interactions is estimated via measurements of niche

breadth or specialization/tolerances in community

ecology, mate selection at the population level, or

network information in ecosystem science (cf. Ulano-

wicz, 1997). Similarly, the loss of autonomy may take

many forms: the loss of freedom for independent

movement as in migrating individual caribou; the loss

of reproductive ‘rights’ as in wild dogs, mole rats, or

social wasps; the loss of independent reproductive

ability in plants involved in mutualism with obligatory

pollinators. Thus, ecologists examine effects of

integration on their study system across all levels of

organization and scale. Later on I represent integration

as an arbitrary parameter I that assumes values between

0 and 1 and affects the strength of hierarchy, or

distinctness of its components (cf. decomposability), as

a useful albeit the simplest substitute for the above

indicators of integration.

Specific aspects of integration could potentially be

quantified by mutual information (cf. Langton, 1992;

Ulanowicz, 1997). Mutual information is a measure of

dependence between two variables akin to correlation,

with correlation limited to measuring linear depen-

dence only (Li, 1990). Mutual information can

measure the amount of constraint exerted on an

arbitrary quantum of currency flowing from one

compartment to another (Ulanowicz, 1997). In

ecosystem models this will often be carbon but in

other ecological systems it could be one of many other

currencies; for example, for a pair of breeding birds

one might prefer fitness. In brief, mutual information

could serve as a measure of integration for some

aspects of organization.

2.2. Interaction strength

I have omitted interaction strength from the list of

integration correlates because it can cause some

confusion. Interaction strength may be a good measure

of integration when it is evaluated within a specific

system but not among systems. In the former case,

evaluation of interaction strength would involve

quantification of mutual impact among components

using some suitable index variable(s) such as element

flows, fitness, survival, and many others. This impact

could result in coordination (another correlate), loss or

gain of autonomy, change in substitutability, or change
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in a number of other system attributes. Interactions

between different systems may be destructive and thus,

irrespective of their strength, do not contribute to

integration. In other words, interaction strength

between separate systems contributes directly nothing

to understanding of the relationship between hierarchy,

integration, and complexity and becomes a caveat.

2.3. Effective complexity

The conceptual and material importance of

integration reveals itself through its impact on

complexity. Fully decomposable (non-integrated)

systems are simple, as are fully integrated higher

level systems (in fact, it could be argued that they are

one and the same thing): between the two extremes lie

degrees of integration of components and, thus,

complexity. If one considers the individual compo-

nents of a prospective system (the lowest elements in

Fig. 1a), the magnitude of complexity (whether

algorithmic, hierarchical, or informational) they

present is limited. As a hierarchy of integrated entities

emerges from lower level components (Fig. 2), the

effective complexity increases because the relations

between new higher level components resulting from

integration must now be considered in addition to the

relations among components of a single level. Thus,
Fig. 2. Changes in effective complexity as a function of integration.

The diagrams above the curve illustrate progressive integration of

four components (round dark circles). Increasing opacity stands for

progressive loss of autonomy of lower level components resulting

from integration. Note that the effective complexity of an arbitrary

collection of four independent components is higher than that of a

fully integrated system.
the effective complexity of relations among levels,

with the attendant increase in the number of possible

interactions and effects, increases as the system model

includes components beyond the first level in the

hierarchy. This process can be thought of as involving

an increase in the degrees of freedom (or more

entropy) and thus, according to Ricard (2003) defining

a complex system. With progressive increases in

integration, the autonomy of subcomponents (com-

ponents at lower hierarchical levels) diminishes and

their behavior and attributes cease being relevant to

understanding or predicting system behavior (Fig. 2).

Consequently, the system’s complexity disappears (cf.

Ricard, 2003) and the observer experiences it as a

single opaque object (cf. Allen et al., 1984; who

employ the concept of surface to convey the degree of

opaqueness).

For example, for many applications, theoretical or

practical, we are able to ignore the internal structure of

atoms. Similarly, in community ecology studies,

lichens and corals lose their taxonomic composition,

while angler fish lose their gender aspect (males are

reduced to an appendage in females) and are treated as

sexually unstructured populations.

This phenomenon appears to be general and can

be formulated as a rule: ‘Complexity is highest at

intermediate degrees of integration’. This rule

applies irrespective of the language used to represent

a class of systems, as long as the integration gradient

associated with the model spans the full range of

parameter values observed or expected in that class.

Others (Langton, 1992; Solé and Goodwin, 2000)

have obtained similar results along the axis defined

by mutual information, i.e., random versus ordered

(mutually predictive) states. However, from the

argument presented above it appears that effec-

tive complexity does arise in all situations where

the mutual dependence of parts varies, with

randomness—order axis being one of the of specific

cases.

Furthermore, the rule linking integration and

complexity intuitively agrees with the concept and

properties of middle number systems (cf. Allen and

Starr, 1982). Because hierarchical systems are middle

number systems and, because integration appears to

generate hierarchical structure, middle number sys-

tems and complexity may be different reflections of

this shared underlying attribute.



J. Kolasa / Ecological Complexity 2 (2005) 431–442436
One undesirable consequence of intermediate

integration, wherever it is encountered, is a need to

construct complex explanatory models (cf. Pickett

et al., 2004). The only obvious way around this

problem is to redefine the system (cf. Allen et al.,

2005) in such a way so as to reduce or enhance its

integration and thus reduce the effective complexity of

the system representation.
Fig. 3. An example of a hierarchical system composed of k = 9

subassemblies (8 at level 2 and 1 at level 1); each comprising n = 8

components. In this configuration ntot = 64 + 8 = 72. Dotted boxes

identify hierarchical levels.
3. Quantitative effects of integration and

hierarchy on system assembly, persistence, and
resistance to perturbation

Simon (1962) considered consequences of hier-

archy by calculating time required to assemble a watch

out of a given number of parts in two ways: a watch

maker may attempt to add all the parts in one

continuous effort (direct assembly), or may chose to

first assemble groups of parts into several subassem-

blies and then combine subassemblies into the final

product (hierarchical assembly). Simon (1962) further

assumed that each assembly process involves errors

and that an error would result in the loss of all the work

completed prior to it. Under these assumptions, Simon

(1962) showed that the hierarchical assembly process

will be completed much sooner than the direct process

that involves no subassemblies.

While Simon aimed at demonstrating that hier-

archical systems can evolve much faster than directly

assembled systems—fast enough to counter argu-

ments made by opponents of evolution—I suggest that

his explorations have also broad applicability to

ecology. This applicability becomes more obvious

when the watch assembly represents the development

or recovery of an ecological system, and the watch-

maker’s error is taken as a metaphor for a stochastic

perturbation to that system. In this paper, I intend to

show that this line of exploration offers insights and a

general explanatory value when applied to highly

complex and diverse multispecies systems.

3.1. Approach and methods

Calculations of the effects of hierarchical structure

on system persistence or susceptibility to perturbation

employ a generalized version of the model proposed

by Simon [(1962); Eq. (1)]. In addition, modifying
assumptions were added to examine the effect of

integration strength on system properties. First,

consider a system composed of n components in

subassembly, with ntot, the total number of compo-

nents to assemble, in k subassemblies (Fig. 3).

Further, the time required to complete a system

assembly, Ta is given by

Ta ¼ kE

�
1

1 � p

�n

(1)

where p is the probability of perturbation while adding

a component and E is the mean number of components

assembled before a collapse, and where Ta is evaluated

by the number of assembly steps (which equals the

number of components involved in the process of

assembly; see Appendix 1). E obtains from the follow-

ing (see Appendix 1 for details):

E ¼ ð1 � pÞ½1 � ð1 � pÞn�
p

(2)

Effects of integration were obtained via its effect on

n and k such that partial integration produces partial

subassemblies. Such partial subassemblies have

intermediate values of n and k that are subsequently

used in Eq. (1) and (2). For example, a system of four

components integrated at 0.5 level can be seen as a

mean (k = 2, n = 3) of a fully integrated hierarchical

system (k = 3, n = 2) and a non-hierarchical assembly

(k = 1, n = 4). Thus, in the model, full integration

occurs and is defined by the state such that n can be

unambiguously evaluated at any single level of

hierarchy (does not involve two levels).

Finally, disturbance was assumed to propagate

between subassemblies at a constant rate and thus in
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inverse proportion to the number of compartments or

subassemblies, k. Using the previous example, in a

non-hierarchical system (k = 1) disturbance will

propagate without hindrance and will result in a

complete disruption of the singular assembly process.

This process will have to restart anew.
Fig. 5. The extent of structural damage to a perturbed system as a

function of probability of perturbation, p, and degree of integration,

I. For any system, the response space must lie between the curves

describing I = 0 (continuous line) and I = 1 (dash and dot line).

Consequently, all organized ecological structures must lie within the

shaded area and all structures or patterns outside this area remain

collections of independent particles best treated by simple statistics.
4. Results

As proposed by Simon (1962), a hierarchical

system assembles orders of magnitude faster than a

system without nested compartments (Fig. 4a; line 0

versus other lines). Furthermore, the size of compart-

ment measured in terms of the number of elementary

components, n, makes a substantial difference

(compare lines 2, . . ., 32 in Fig. 4a; noting the log

scale of the y-axis). However, the most interesting

observation resulting from this analysis is that the

effect of subassembly size depends on the probability

of perturbation, p, and that it reverses at some specific

and small value of p (Fig. 4b). In general, small

subassembly sizes lead to faster assembly or repair of

a system when the perturbation probability is low. This

advantage disappears and switches to larger compart-

ment sizes when p increases.

In a system with no damage propagation, the

magnitude of damage measured in this case by the loss

of parts (out of 64 components) strongly depends on
Fig. 4. Time needed to complete the assembly as a function of probabilit

Numerals to the right of curves are n values, with 0 indicating direct ass

subassembly size of 2, and so on. The dotted rectangle identifies the area
system integration (see Section 3.1). Two limiting

cases describe the response phase space of interest

(Fig. 5). Here, a system containing no intervening

structure of subassemblies, suffers the highest damage

when perturbation probability, p, is low. This is largely

due to the fact that low p permits considerable

advancement of the assembly process before a
y of error during the assembly and of the subassembly size (n). (a)

embly of 64 components into a complete system, 2 indicating the

enlarged in (b).
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Fig. 6. Effect of integration on the magnitude of damage to the

whole systems (in percentage of elementary components lost) and as

a function of subassembly size, n, for p = 0.1. The damage propaga-

tion is highest when integration and subassembly size are large.
collapse takes place. The opposite limiting case of

fully modular assembly process exhibits very limited

amount of damage at low p. The significance of the

difference between these two limiting cases becomes

obvious when viewed in combination with the high

rate of successful assembly process in compartmen-

talized system (system with small values of n). To sum

the results up to this point, a system with a hierarchical

structure assembles much faster and this can be

attributed to the minimization of setbacks incurred

from perturbation.

So far, the analyses have related perturbation

probability to the structural attributes of the system at

the level of elementary components. Specifically, they

explored whole system consequences of a perturbation

to a single elementary component. These conse-

quences appear to depend strongly on the size of a

subassembly, n, and the probability of perturbation, p,

with the two interacting in complex ways.

The results become much more relevant to ecology

when we add realism to the general picture using

supplementary assumptions. This additional realism

reflects the intuitive expectation that, following a

perturbation event, damage spreads (a) in proportion

to integration and (b) inversely to the degree of

compartmentalization (by way of sub-assemblies).

The first assumption states that the destruction of one

subassembly may induce (propagate to) failure of

other subassemblies and that this propagation of

perturbation will increase with the degree of integra-

tion of the whole system. The second assumption

reflects the fact that this propagation is easier within a

subassembly than between subassemblies (compart-

ments) of the system. Thus, a system with a higher

degree of compartmentalization, that is higher value of

k (and, correspondingly, lower value of n), should

show higher resistance to the spread of perturbation.

A calculated example (Fig. 6) illustrates that

damage (in terms of parts lost) is most severe in

highly integrated systems and in systems with larger

subassembly sizes. Furthermore, it shows that the

greatest increase in the magnitude of damage occurs

during the transition from the smallest (low n)

subassemblies to intermediate size subassemblies.

Read from a different perspective, the graph reveals a

phenomenon of great importance to ecology: a highly

integrated system should also be highly modular

(compartmentalized) if it is to reduce the extent of
damage resulting from a perturbation. Alternatively, a

highly integrated multispecies system will be most

vulnerable to perturbation unless it is also highly

compartmentalized.
5. Discussion

In the qualitative section of the paper I proposed the

notion of effective complexity. Its name is identical to

a concept proposed by Gell-Mann and Lloyd (1996)

but its substance differs. In this paper, I emphasize the

dependence of the perception of complexity on

component integration while Gell-Mann and Lloyd

(1996) effective complexity evaluates complexity of a

system against the background of randomness in the

arrangement of elementary components in that

system.

The quantitative exploration confirms Simon

(1962) postulate of the positive effect of hierarchy

on the system to assemble or repair itself. However,

the new finding is that this general effect is strongly

modulated by the structural properties of hierarchy.

Specifically, I find that subassembly size and

discreteness (compartmentalization) are important.

The probability of perturbation and the compartmen-

talization of the system structure do interact in such a
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way that different combinations of their values may

lead to opposite effects. Small perturbation probabil-

ities give advantage to assembly process using small

components while, counter intuitively, large perturba-

tion probabilities favor assembly using large compo-

nents (large n). Furthermore, the analysis indicates

that the positive effect of hierarchy is enhanced by

integration but only when accompanied by increasing

compartmentalization of structure. The latter result

appears to parallel the classical complexity-stability

debate (cf. May, 1973) by pointing out that diverse

systems must not be unstable as long as the increase in

integration (�connectance and �interaction strength)

is compensated by compartmentalization (�1/con-

nectance). Unlike food web analyses, the approach

presented here does not imply any internal system

instability, deals with ecological systems ranging from

groups of individuals such as fish schools to complete

ecosystems and metacommunities, and goes beyond

trophic interactions among species. Trophic connec-

tions may constitute, if applicable, just one of many

mechanisms producing interdependence among com-

ponents at different hierarchical levels. Many other

interactions may also affect the membership in a

system. In the domain of community ecology, such

interactions may include competition for space among

plants or other sedentary organisms, symbiotic

relationships (pollination, commensalism, security),

facilitation via mutual or asymmetric habitat mod-

ification), nutrient recycling and others. Each of these

interactions may involve a group of species of some

size (subassembly) that are isolated to varying degrees

(compartmentalization) from other groups of species

in the system.

Solé and Goodwin (2000) proposed a measure of

complexity that is directly linked to integration

outlined above. Specifically, they evaluate the ‘dis-

tance to independence’ which is the difference

between the probability of observing independent

states of non-interacting components and the prob-

ability of observing states of components mutually

influencing their states. This idea maps well to the

concept of coordination (Kolasa and Pickett, 1989).

When the component’s state is predicated by the other

component’s state, coordination is high. When these

states are entirely random, coordination does not exist

and hence there is no integration. Intermediate states

have both the elements of predictability and random-
ness—a configuration that Solé and Goodwin (2000)

consider as signature of complexity (but see Jørgensen

(2002) for a diametrically opposite view, or Ulanowicz

(1997) who associates complexity with a number of

unique although not necessarily random events).

While in this paper I draw on the view that integration

and complexity interact, I emphasize that they are not

the same. The need to discriminate between these

concepts arises because states of two components can

be predictable from but not causally linked to one

another if both respond predictably to an external

force. In such a situation, complexity would be a

function of the arbitrary observation window (inclu-

sion of objects or states that do not interact) as opposed

to intrinsically generated complexity of an integrated

system. Importantly, it is the latter that is of interest to

ecologists who want to know how differently

constructed systems function and respond to external

agents.

5.1. Predictions/hypotheses

Given the interplay between compartmentaliza-

tion and integration (Fig. 6), it is possible to suggest

that for any environmental template there will be an

equilibrium organization described by these two

variables such that any system will have maximum

integration and minimum compartmentalization for a

given probability of perturbation (size or frequency,

or their combination). Thus, physically stable

habitats, stable communities, or stable ecosystems

will attain high integration but support small

compartments (high modularity of interactions) and

physically variable habitats, communities, or eco-

systems will support larger compartments and lower

specificity of component interactions. Ecological

communities offer a contrasting example: two species

that engage in obligatory mutualism form a smaller

and more discrete compartment (or interactive

module) than two facultative mutualists, with orchids

and their pollinators or ants and plants showing a

broad range of transitions. I believe that these

conditions are generally scalable without losing their

qualitative relations. If this is so, then ecologists

should determine a degree of compartmentalization

for the more complex and less understood systems in

order to guide the management and conservation

strategies.
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These ideas have clear affinity to the concept of

poised systems (Kauffman, 1993; Perry, 1995),

systems that have reached self-critically and remain

robust through being adapted to specific conditions but

become subject to threshold changes when their

bounds of adaptation are exceeded. For such systems,

greater integration might imply greater resistance to

perturbation when the bounds of adaptation are not

exceeded but greater magnitude of damage when they

are. Recent refinements of the notion of alternative

stable states (Beisner et al., 2003) suggest empirical

approaches to testing these connections.

5.2. Areas of promising exploration

The model I used ignores one fundamental property

of hierarchical organization—the rate differences

among nested components or components occurring

at different levels. Normally, higher level components

operate at slower rates (O’Neill et al., 1986). In the

model, the probability of perturbation was calculated

in relation to the number of assembly steps without,

however, differentiation among levels. A more general

and realistic model should account for the fact that the

assembly steps at higher levels are slower. Conse-

quently, mean effect of perturbation will depend not

only on mean n but also on the distribution frequency

of subassemblies within the hierarchical structure.

A number of traditional areas of research might also

benefit from the new perspective. For example, analysis

of integration and its consequences could help identify

additional general trends in system organization during

succession. The results presented earlier suggest that

one should expect a gradual development of more

specific, modular interactions as species accumulate

and integrate into a community during succession. The

limits to the development of modularity will be set by

antagonistic, exogenous processes (cf. Li, 2000),

modeled here as size of perturbation. In addition, an

increase in modularity, or splitting of higher level states

into new, complementary states, can be seen as an

increase in order (Li, 2000).

Lessons from metapopulation and metacommunity

studies (e.g., Hastings, 2003) suggest that barriers to

dispersal due to distance or unsuitable habitat matrix

can disrupt spatial cohesion of populations and

multispecies assemblages. Since the increase in spatial

scale of the system is negatively correlated with its
integration (see Section 2), metacommunity models

may offer a valuable tool for examination of

integration in multispecies systems, particularly as

far as their vulnerability to fragmentation, perturba-

tion frequency and amplification, asymmetry of

interactions, and the degree of compartmentalization

are concerned. The latter has not been examined by the

existing models (cf. Leibold et al., 2004).

Integration of communities and ecosystems in

stable and variable environments could provide further

insights into the interdependence of species and the

best modes for their conservation. For example, as a

widely distributed population becomes restricted to

small habitat fragments, it undergoes transition from a

poorly integrated large scale system that can be

managed as ‘‘averages’’ to a collection of much more

integrated systems that each requires specific and

different management. In addition, invasion and

vulnerability to invasion represent ecological situa-

tions of great interest that may depend on system

integration in general. Finally, integration is likely to

play a major role in determining boundaries on the

number of species in a community, a problem of both

practical and theoretical importance.
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Appendix A. Derivation of equations

Equation 1

Define

Ta—time required to complete system assembly. Ta

is evaluated by the number of assembly steps

counted as the total number of components that
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must enter the assembly process. Hence, Ta is

expressed in terms of the number of components.

p—probability of perturbation while adding a

component. This perturbation results in resetting

the assembly process for a given subassembly.

n—number of components in subassembly (=sub-

assembly size).

k—the number of subassemblies (k is a function of

system size and n). For example, a system of 1000

components assembled in groups of n = 10 will

require 111 assemblies to construct (100 groups of

10, which are then assembled in 10 more groups,

and which in turn will require one final assembly).

Consequently, k is a dimensionless quantity

describing ‘packaging’ of components, or the

amount of work that must be accomplished once

the mean subassembly size is given.

The total assembly steps needed too construct the

system will be proportional to a product of the mean

number of components assembled before a collapse

within a subassembly, E, the number of subassem-

blies, and the time required to complete one

subassembly. The time required to complete one

subassembly is given by (Simon, 1996, p. 190) as�
1

1 � p

�n

For the whole system we can write

Ta ¼ kE

�
1

1 � p

�n

Thus, Ta is expressed in terms of the total number of

components that will be involved in the system con-

struction until its completion. This number will be

much larger that the total number of system compo-

nents because many of the components will have to be

reused many times before the construction is com-

pleted.

Equation 2

For a system made up of n components,
the expected number of successfully assembled

components until a perturbation occurs can be

calculated as follows. Denote by z the number of

successfully assembled components. This value

indicates that before a perturbation occurs, z

components were successfully assembled, the prob-

ability of this happening is

ð1 � pÞz p; z ¼ 0; 1; 2; . . . ; n� 1;

where p is the probability of experiencing a perturba-

tion in assembling (i.e., adding) any single component.

The probability of successfully assembling all the

components in the system is (1 � p)n. Hence the

expected number of components successfully

assembled, called E, is the average of the z values

weighed by their probabilities (see e.g., Devore, 2004,

p. 112), that is

E ¼
Xn�1

z¼0

zð1 � pÞz pþ nð1 � pÞn:

This can be written as

E ¼ pð1 � pÞ
Xn�1

z¼0

zð1 � pÞz�1 þ nð1 � pÞn

To work out the sum involved, take derivatives with

respect to p on both sides of the well-known geometric

identity

1 þ ð1 � pÞ þ ð1 � pÞ2 þ � � � þ ð1 � pÞn�1

¼ 1 � ð1 � pÞ
p

n

to obtain

Xn�1

z¼0

zð1 � pÞz�1 ¼ 1 � ð1 � pÞn � n pð1 � pÞn�1

p2
:

Replacing this expression for the sum in the above

form for E gives

E ¼ ð1 � pÞ½1 � ð1 � pÞn�
p

:
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